Cyber Tech

Kea show three signatures of domain-general statistical inference


  • 1.

    Shettleworth, S. J. Modularity, comparative cognition and human uniqueness. Philos. Trans. 367, 2794–2802 (2012).

    Article 

    Google Scholar 

  • 2.

    Shettleworth, S. J. Cognition, Evolution, and Behavior. (Oxford University Press, New York, 2010).

    Google Scholar 

  • 3.

    Duchaine, B., Cosmides, L. & Tooby, J. Evolutionary psychology and the brain. Curr. Opin. Neurobiol. 11, 225–230 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Carroll, J. B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies. (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  • 5.

    Horn, J. L. & Cattell, R. B. Age differences in fluid and crystallized intelligence. Acta Psychol. 26, 107–129 (1967).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Deary, I. J., Spinath, F. M. & Bates, T. C. Genetics of intelligence. Eur. J. Hum. Genet. 14, 690–700 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Burkart, J. M., Schubiger, M. N. & van Schaik, C. P. The evolution of general intelligence. Behav. Brain Sci. 40, e195 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Cosmides, L. & Tooby, J. The Latest on the Best: Essays on Evolution and Optimality. (MIT Press, Cambridge,MA, 1987).

    Google Scholar 

  • 9.

    Spearman, C. General intelligence, objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904).

    Article 

    Google Scholar 

  • 10.

    Carruthers, P. The cognitive functions of language. Behav. Brain Sci. 25, 657–674 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Mithen, S. J. The Prehistory of the Mind. (Thames & Hudson, London, 1996).

    Google Scholar 

  • 12.

    Gentner, D., Holyoak, K. J. & Kokinov, B. N. The Analogical Mind. (The MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  • 13.

    Anderson, B. Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: intelligence? Neurosci. Lett. 153, 98–102 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Shaw, R. & Schmelz, M. Cognitive test batteries in animal cognition research: evaluating the past, present and future of comparative psychometrics. Anim. Cogn. 20, 1003–1018 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Wass, C. et al. Covariation of learning and “reasoning” abilities in mice: evolutionary conservation of the operations of intelligence. J. Exp. Psychol. Anim. Behav. Process. 38, 109–124 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Shaw, R. C., Boogert, N. J., Clayton, N. S. & Burns, K. C. Wild psychometrics: evidence for ‘general’cognitive performance in wild New Zealand robins, Petroica longipes. Anim. Behav. 109, 101–111 (2015).

    Article 

    Google Scholar 

  • 17.

    Amici, F., Barney, B., Johnson, V. E., Call, J. & Aureli, F. A modular mind? A test using individual data from seven primate species. PLoS ONE 7, e51918 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Stevens, J., Kennedy, B., Morales, D. & Burks, M. The domain specificity of intertemporal choice in pinyon jays. Psychon. Bull. Rev. 23, 915–921 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    van Horik, J. O., Langley, E. J. G., Whiteside, M. A., Laker, P. R. & Madden, J. R. Intra-individual variation in performance on novel variants of similar tasks influences single factor explanations of general cognitive processes. R. Soc. Open Sci. 5, 171919 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Volter, C. J., Tinklenberg, B., Call, J. & Seed, A. M. Comparative psychometrics: establishing what differs is central to understanding what evolves. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 373, 20170283 (2018).

    Article 

    Google Scholar 

  • 21.

    Premack, D. Human and animal cognition: continuity and discontinuity. Proc. Natl Acad. Sci. USA 104, 13861–13867 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Evans, J. S. B. T. In two minds: dual-process accounts of reasoning. Trends Cogn. Sci. 7, 454–459 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Spelke, E. Language in Mind (eds Gentner, D. & Goldin-Meadow, S.) 277–311 (MIT Press, Cambridge, MA, 2013).

  • 24.

    Premack, David Why humans are unique: three theories. Perspect. Psychol. Sci. 5, 22–32 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Bell, D. E., Raiffa, H. & Tversky, A. Decision Making. (Cambridge University Press, New York, NY, 1988).

    Google Scholar 

  • 26.

    Koehler, D. J. & Harvey, N. Blackwell Handbook of Judgment and Decision Making. (Blackwell Publishing, Malden, 2004).

    Google Scholar 

  • 27.

    Wang, Y. The cognitive processes of formal inferences. Int. J. Cogn. Inform. Nat. Intell. 1, 75–86 (2007).

    Article 

    Google Scholar 

  • 28.

    Denison, S. & Xu, F. The origins of probabilistic inference in human infants. Cognition 130, 335–347 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Denison, S., Reed, C. & Xu, F. The emergence of probabilistic reasoning in very young infants: evidence from 4.5- and 6-month-olds. Dev. Psychol. 49, 243–249 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Téglás, E., Girotto, V., Gonzalez, M. & Bonatti, L. L. Intuitions of probabilities shape expectations about the future at 12 months and beyond. Proc. Natl Acad. Sci. USA 104, 19156–19159 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Denison, S. & Xu, F. Integrating physical constraints in statistical inference by 11-month-old infants. Cogn. Sci. 34, 885–908 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Ernő Téglás et al. Pure reasoning in 12-month-old infants as probabilistic inference. Science 332, 1054–1059 (2011).

    ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Wellman, H. M., Kushnir, T., Xu, F. & Brink, K. A. Infants use statistical sampling to understand the psychological world. Infancy 21, 668–676 (2016).

    Article 

    Google Scholar 

  • 34.

    Xu, F. & Denison, S. Statistical inference and sensitivity to sampling in 11-month-old infants. Cognition 112, 97–104 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Gweon, H., Tenenbaum, J. B., Schulz, L. E. & Carey, S. E. Infants consider both the sample and the sampling process in inductive generalization. Proc. Natl Acad. Sci. USA 107, 9066–9071 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Ma, L. & Xu, F. Young children’s use of statistical sampling evidence to infer the subjectivity of preferences. Cognition 120, 403–411 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Kushnir, T., Xu, F. & Wellman, H. M. Young children use statistical sampling to infer the preferences of other people. Psychol. Sci. 21, 1134–1140 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Rakoczy, H. et al. Apes are intuitive statisticians. Cognition 131, 60–68 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Eckert, J., Call, J., Hermes, J., Herrmann, E. & Rakoczy, H. Intuitive statistical inferences in chimpanzees and humans follow Weber’s law. Cognition 180, 99–107 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Tecwyn, E., Denison, S., Messer, E. & Buchsbaum, D. Intuitive probabilistic inference in capuchin monkeys. Anim. Cogn. 20, 243–256 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Clements, K. A., Gray, S. L., Gross, B. & Pepperberg, I. M. Initial evidence for probabilistic reasoning in a grey parrot (Psittacus erithacus). J. Comp. Psychol. 132, 166–177 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    De Petrillo, F. & Rosati, A. G. Rhesus macaques use probabilities to predict future events. Evolut. Hum. Behav. 40, 436–446 (2019).

    Article 

    Google Scholar 

  • 43.

    Roberts, W., MacDonald, H. & Lo, K. Pigeons play the percentages: computation of probability in a bird. Anim. Cogn. 21, 575–581 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Placì, S., Padberg, M., Rakoczy, H. & Fischer, J. Long-tailed macaques extract statistical information from repeated types of events to make rational decisions under uncertainty. Sci. Rep. 9, 12107–12112 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Eckert, J., Rakoczy, H., Call, J., Herrmann, E. & Hanus, D. Chimpanzees consider humans’ psychological states when drawing statistical inferences. Curr. Biol. 28, 1959–1963.e3 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Taylor, A. H. Corvid cognition. Wiley Interdiscip. Rev. 5, 361–372 (2014).

    Article 

    Google Scholar 

  • 47.

    Güntürkün, O. & Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 20, 291–303 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Bird, C. D., Emery, N. J. & Gallistel, C. R. Insightful problem solving and creative tool modification by captive nontool-using rooks. Proc. Natl Acad. Sci. USA 106, 10370–10375 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Laumer, I. B., Bugnyar, T. & Auersperg, A. M. I. Flexible decision-making relative to reward quality and tool functionality in Goffin cockatoos (Cacatua goffiniana). Sci. Rep. 6, 28380 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Placì, S., Eckert, J., Rakoczy, H. & Fischer, J. Long-tailed macaques (Macaca fascicularis) can use simple heuristics but fail at drawing statistical inferences from populations to samples. R. Soc. Open Sci. 5, 181025 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Dickinson, A. & Clayton, N. S. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Taylor, A. H., Hunt, G. R., Holzhaider, J. C. & Gray, R. D. Spontaneous metatool use by new caledonian crows. Curr. Biol. 17, 1504–1507 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    von Bayern, A. M. P., Danel, S., Auersperg, A. M. I., Mioduszewska, B. & Kacelnik, A. Compound tool construction by New Caledonian crows. Sci. Rep. 8, 15676–15678 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Weir, A. & Kacelnik, A. A new Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminium strips. Anim. Cogn. 9, 317–334 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Chappell, J. & Kacelnik, A. Tool selectivity in a non-primate, the New Caledonian crow (Corvus moneduloides). Anim. Cogn. 5, 71–78 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Dally, J. M., Emery, N. J. & Clayton, N. S. Food-caching western scrub-jays keep track of who was watching when. Science 312, 1662–1665 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Taylor, A. H., Elliffe, D., Hunt, G. R. & Gray, R. D. Complex cognition and behavioural innovation in New Caledonian crows. Proc. R. Soc. Biol. Sci. 277, 2637–2643 (2010).

    Article 

    Google Scholar 

  • 59.

    Alexis, D. M., Raby, C. R., Clayton, N. S. & Dickinson, A. Planning for the future by western scrub-jays. Nature 445, 919–921 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Wimpenny, J. H., Weir, A. A. S., Clayton, L., Rutz, C. & Kacelnik, A. Cognitive processes associated with sequential tool use in New Caledonian crows. PloS ONE 4, e6471 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Auersperg, A. M. I. & von Bayern, A. M. P. Who’s a clever bird—now? A brief history of parrot cognition. Behaviour 156, 391 (2019).

    Article 

    Google Scholar 

  • 62.

    Auersperg, A. M. I. et al. Flexibility in problem solving and tool use of Kea and New Caledonian Crows in a multi access box paradigm. PLoS ONE 6, e20231 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Auersperg, A. M. I., Szabo, B., von Bayern, A. M. P. & Kacelnik, A. Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. Curr. Biol. 22, R903–R904 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Auersperg, A. M. I., Huber, L. & Gajdon, G. K. Navigating a tool end in a specific direction: stick-tool use in kea (Nestor notabilis). Biol. Lett. 7, 825–828 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Auersperg, A. M. I., Gajdon, G. K. & Huber, L. Kea, Nestor notabilis, produce dynamic relationships between objects in a second-order tool use task. Anim. Behav. 80, 783–789 (2010).

    Article 

    Google Scholar 

  • 66.

    Auersperg, A. M. I., Borasinski, S., Laumer, I. & Kacelnik, A. Goffin’s cockatoos make the same tool type from different materials. Biol. Lett. 12, 20160689 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Greer, A. L., Gajdon, G. K. & Nelson, X. J. Intraspecific variation in the foraging ecology of kea, the world’s only mountain- and rainforest-dwelling parrot. N.Z. J. Ecol. 39, 254–261 (2015).

    Google Scholar 

  • 68.

    Seed, A. M., Tebbich, S., Emery, N. J. & Clayton, N. S. Investigating physical cognition in rooks, Corvus frugilegus. Curr. Biol. 16, 697–701 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Teschke, I. et al. Did tool-use evolve with enhanced physical cognitive abilities? Philosophical transactions of the Royal Society of London. Philos. R. Soc. Lond. Ser. B Biol. Sci. 368, 20120418 (2013).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Gruber, R. et al. New Caledonian crows use mental representations to solve metatool problems. Curr. Biol. 29, 68–692.e3 (2019).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Benton, M. J. & Donoghue, P. C. J. PaleontologicaL Evidence to Date the Tree of Life. Mol. Biol. Evolut. 24, 26–53 (2007).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuroscience-Inspired artificial intelligence. Neuron 95, 245–258 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M. & Poggio, T. Robust object recognition with cortex-like mechanisms. TPAMI 29, 411–426 (2007).

    Article 

    Google Scholar 

  • 76.

    Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Article 

    Google Scholar 

  • 77.

    JASP Team (2019). JASP (Version 0.9.2) [Computer Software].

  • 78.

    Wagenmakers, E. et al. Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychon. Bull. Rev. 25, 35–57 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 79.

    R Core Team. A Language and Program for Statistical Computing. https://www.R-project.org/. (Vienna, Austria, R Foundation for Statistical Computing, 2017).

  • 80.

    Bürkner, P. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • 81.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article 

    Google Scholar 



  • Source link

    ASu
    I am tech enthusiast and a keen learner, Currently pursuing Bachelors in Computer Science from University of Delhi
    https://technewz.org

    Leave a Reply

    Your email address will not be published. Required fields are marked *